5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.

5. Consequence and Determinism

M. H. Combs

THE VALUE OF SCIENCE

DO not intend to treat here the question of the consequences of the laws of nature, which is entirely outside the scope of the present paper. But we shall say that the state of the universe at the instant of the last piece of evidence of application of the law, if any, required by the law, would then be stated: If all the conditions are fulfilled, the phenomenon will happen; if not, the phenomenon will not happen. Now it is clear that such a description could not be found in the enumeration of the laws of nature. Moreover, the statement of the consequences of the experiment can happen. I should first define the phenomenon which must happen at the instant of the evidence. If any conditions are violated, the phenomenon must not happen. If all the conditions are satisfied, the phenomenon must happen. If none of the conditions are satisfied, the phenomenon must not happen.
Take the law of gravitation, which is the least imperfect of all known laws. It enables us to foresee the motions of the planets. When I use it, for instance, to calculate the orbit of Saturn, I neglect the action of the stars, and in doing so, I am certain of not deceiving myself, because I know that these stars are too far away for their action to be sensible.

I announce, then, with a quasi-certitude that the coordinates of Saturn at such an hour will be comprised between such and such limits. Yet is that certitude absolute? Could there not exist in the universe some gigantic mass, much greater than that of all the known stars and whose action could make itself felt at great distances? That mass might be animated by a colossal velocity, and after having dispersed from all time at such distances that its influence had remained hitherto inessible to us, it might come all at once to pass near us. Surely it would produce in our solar system enormous perturbations that we could not have foreseen. All that can be said is that such an event is wholly improbable, and then, instead of saying: Saturn will be near such a point of the heavens, we must limit ourselves to saying: Saturn will probably be near such a point of the heavens. Although this probability may be practically equivalent to certainty, it is only a probability.

For all these reasons, no particular law will ever be more than approximate and probable. Scientists have never failed to recognize this truth; only they believe, right or wrong, that every law may be replaced by another closer and more probable, that this new law will itself be only provisional, but that the same movement can continue indefinitely, so that science in progressing will possess laws more and more probable, that the approximation will end by differing as little as you choose from exactitude and the probability from certitude.

If the scientists who think thus were right, must it still be said that the laws of nature are contingent, even though each law, taken in particular, may be qualified as contingent? Or must one require, before concluding the contingency of the natural laws, that this progress have an end, that the scientist finish some day by being arrested in his search for a closer and closer approximation and that, beyond a certain limit, he thereafter meet in nature only caprice?

In the conception of which I have just spoken (and which I shall call the scientific conception), every law is only a statement, imperfect and provisional, but it must one day be replaced by another, a superior law, of which it is only a crude image. No place therefore remains for the intervention of a free will.

It seems to me that the kinetic theory of gases will furnish us a striking example.

You know that in this theory all the properties of gases are explained by a simple hypothesis; it is supposed that all the gaseous molecules move in every direction with great velocities and that they follow rectilinear paths which are disturbed only when one molecule passes very near the sides of the vessel or another molecule. The effects of our crude senses enable us to observe the mean effects, and in these means, the great deviations compensate, or at least it is very improbable that they do not compensate; so that the observable phenomena follow simple laws such as that of Mariotte or of Gay-Lussac. But this compensation of deviations is only probable. The molecules incessantly change place and in these continual displacements the figures they form pass successively through all possible combinations. Singly these combinations are very numerous; almost all are in conformity with Mariotte's law, only a few deviate from it. These also will happen, only it would be necessary to wait a long time for them. If a gas were observed during a sufficiently long time, it would certainly be finally seen to deviate, for a very short time, from Mariotte's law. How long would it be necessary to wait? If it were desired to calculate the probable number of years, it would be found that this number is so great that to write only the number of places of figures employed would still require half a score places of figures. No matter; enough that it may be done.

I do not care to discuss here the value of this theory. It is evident that if it be adopted, Mariotte's law will thereafter appear only as contingent, since a day will come when it will not be true. And yet, think you the partisans of the kinetic theory are adversaries of determinism? Far from it; they are the most ultra of mechanists. Their molecules follow rigid paths, from which they depart only under the influence of forces which vary with the distance, following a perfectly determinate law. There remains in their system not the smallest place either for freedom, or for an evolutionary factor, properly so-called, or for anything whatever that could be called contingency. I add, to avoid mistake, that neither is there any evolution of Mariotte's law itself; it ceases to be true after I know not how many centuries; but at the end of a fraction of a second it again becomes true and that for an incalculable number of centuries.

And since I have pronounced the word evolution, let us clear away another mistake. It is often said: Who knows whether the laws do not evolve and whether we shall not one day discover that they were not at the Carboniferous epoch what they are to-day? What are we to understand by that? What we think we know about the past state of our globe, we deduce from its present state. And how is this deduction made? It is by means of laws supposed known. The law being a relation between the antecedent and the consequent, enables us equally well to deduce the consequent from the antecedent, that is, to
foresee the future, and to deduce the antecedent from the consequent, that is, to conclude from the present to the past. The astronomer who knows the present situation of the stars can from it deduce their future situation by Newton’s law, and this is what he does when he constructs ephemerides; and he can equally deduce from it their past situation. The calculations he thus can make can not teach him that Newton’s law will cease to be true in the future, since this law is precisely his point of departure; not more can they tell him it was not true in the past. Still in what concerns the future, his ephemerides can one day be tested and our descendants will perhaps recognize that they were false. But in what concerns the past, the geological past which had no witnesses, the results of his calculation, like those of all speculations where we seek to deduce the past from the present, escape by their very nature every species of test. So that if the laws of nature were not the same in the Carboniferous age as at the present epoch, we shall never be able to know it, since we can know nothing of this age only what we deduce from the hypothesis of the permanence of those laws.

Perhaps it will be said that this hypothesis might lead to contradictory results and that we shall be obliged to abandon it. Thus, in what concerns the origin of life, we may conclude that there have always been living beings, since the present world shows us always life sprouting from life; and we may also conclude that there have not always been, since the application of the existing laws of physics to the present state of our globe teaches us that there was a time when this globe was so warm that life on it was impossible. But contradictions of this sort can always be removed in two ways; it may be supposed that the actual laws of nature are not exactly what we have assumed; or else it may be supposed that the laws of nature actually are what we have assumed, but that it has not always been so.

It is evident that the actual laws will never be sufficiently well known for us not to be able to adopt the first of these two solutions and for us to be constrained to infer the evolution of natural laws.

On the other hand, suppose such an evolution; assume, if you wish, that humanity lasts sufficiently long for this evolution to have witnesses. The same antecedent shall produce, for instance, different consequents at the Carboniferous epoch and at the Quaternary. That evidently means that the antecedents are closely alike; if all the circumstances were identical, the Carboniferous epoch would be indistinguishable from the Quaternary. Evidently this is not what is supposed. What remains is that such antecedent, accompanied by such accessory circumstance, produces such consequent; and that the same antecedent, accompanied by such other accessory circumstance, produces such other consequent. Time does not enter into the affair.

The law, such as ill-informed science would have stated it, and which would have affirmed that this antecedent always produces this consequent, without taking account of the accessory circumstances, this law, which was only approximate and probable, must be replaced by another law more approximate and more probable, which brings in these accessory circumstances. We always come back, therefore, to that same process which we have analyzed above, and if humanity should discover something of this sort, it would not say that it is the laws which have evolved, but the circumstances which have changed.

Here, therefore, are several different senses of the word contingency. M. Le Roy retains them all and he does not sufficiently distinguish them, but he introduces a new one. Experimental laws are only approximate, and if some appear to us as exact, it is because we have artificially transformed them into what I have above called a principle. We have made this transformation freely, and as the caprice which has determined us to make it is something eminently contingent, we have communicated this contingency to the law itself. It is in this sense that we have the right to say that determinism supposes freedom, since it is freely that we become determinists. Perhaps it will be found that this is to give large scope to nominalism and that the introduction of this new sense of the word contingency will not help much to solve all those questions which naturally arise and of which we have just been speaking.

I do not at all wish to investigate here the foundations of the principle of induction; I know very well that I shall not succeed; it is as difficult to justify this principle as to get on without it. I only wish to show how scientists apply it and are forced to apply it.

When the same antecedent recurs, the same consequent must likewise recur; such is the ordinary statement. But reduced to these terms this principle could be of no use. For one to be able to say that the same antecedent recurred, it would be necessary for the circumstances all to be reproduced, since no one is absolutely indifferent, and for them to be exactly reproduced. And, as that will never happen, the principle can have no application.

We should therefore modify the enunciation and say: If an antecedent A has once produced a consequent B, an antecedent A', slightly different from A, will produce a consequent B', slightly different from B. But how shall we recognize that the antecedents A and A' are "slightly different"? If some one of the circumstances can be expressed by a number, and this number has in the two cases values very near together, the sense of the phrase "slightly different" is relatively clear; the principle then signifies that the consequent is a continuous function of the antecedent. And as a practical rule, we reach this conclusion that we have the right to interpolate. This
is in fact what scientists do every day, and without interpolation all science would be impossible.

Yet observe one thing. The law sought may be represented by a curve. Experiment has taught us certain points of this curve. In virtue of the principle we have just stated, we believe these points may be connected by a continuous graph. We trace this graph with the eye. New experiments will furnish us new points of the curve. If these points are outside of the graph traced in advance, we shall have to modify our curve, but not to abandon our principle. Through any points, however numerous they may be, a continuous curve may always be passed. Doubtless, if this curve is too capricious, we shall be shocked (and we shall even suspect errors of experiment), but the principle will not be directly put at fault.

Furthermore, among the circumstances of a phenomenon, there are some that we regard as negligible, and we shall consider A and A' as slightly different if they differ only by these accessory circumstances. For instance, I have ascertained that hydrogen unites with oxygen under the influence of the electric spark, and I am certain that these two gases will unite anew, although the longitude of Jupiter may have changed considerably in the interval. We assume, for instance, that the state of distant bodies can have no sensible influence on terrestrial phenomena, and that seems in fact requisite, but there are cases where the choice of these practically indifferent circumstances admits of more arbitrariness or, if you choose, requires more tact.

One more remark: The principle of induction would be inapplicable if there did not exist in nature a great quantity of bodies like one another, or almost alike, and if we could not infer, for instance, from one bit of phosphorus to another bit of phosphorus.

If we reflect on these considerations, the problem of determinism and of contingency will appear to us in a new light.

Suppose we were able to embrace the series of all phenomena of the universe in the whole sequence of time. We could envisage what might be called the sequences, I mean relations between antecedent and consequent. I do not wish to speak of constant relations or laws, I envisage separately (individually, so to speak) the different sequences realized.

We should then recognize that among these sequences there are no two altogether alike. But, if the principle of induction, as we have just stated, is true, there will be those almost alike and that can be classed alongside one another. In other words, it is possible to make a classification of sequences.

It is to the possibility and the legitimacy of such a classification that determinism, in the end, reduces. This is all that the preceding analysis leaves of it. Perhaps under this modest form it will seem less appalling to the moralist.

It will doubtless be said that this is to come back by a detour to M. LeRoy's conclusion which a moment ago we seemed to reject: we are determinists voluntarily. And in fact all classification supposes the active intervention of the classifier. I agree that this may be maintained, but it seems to me that this detour will not have been useless and will have contributed to enlighten us a little.

6. Objectivity of Science

I arrive at the question set by the title of this article: What is the objective value of science? And first what should we understand by objectivity?

What guarantees the objectivity of the world in which we live is that this world is common to us with other thinking beings. Through the communications that we have with other men, we receive from them ready-made reasonings; we know that these reasonings do not come from us and that at the same time we recognize in them the work of reasonable beings like ourselves. And as these reasonings appear to fit the world of our sensations, we think we may infer that these reasonable beings have seen the same thing as we; thus it is we know we have not been dreaming.

Such, therefore, is the first condition of objectivity; what is objective must be common to many minds and consequently transmissible from one to the other, and as this transmission can only come about by that "discourse" which inspires so much distrust in M. LeRoy, we are even forced to conclude: no discourse, no objectivity.

The sensations of others will be for us a world eternally closed. We have no means of verifying that the sensation I call red is the same as that which my neighbor calls red.

Suppose that a cherry and a red poppy produce on me the sensation A and on him the sensation B and that, on the contrary, a leaf produces on me the sensation B and on him the sensation A. It is clear we shall never know anything about it; since I shall call red the sensation A and green the sensation B, while he will call the first green and the second red. In compensation, what we shall be able to ascertain is that, for him as for me, the cherry and the red poppy produce the same sensation, since he gives the same name to the sensations he feels and I do the same.

Sensations are therefore intrinsissible, or rather all that is pure quality in them is intrinsissible and forever impenetrable. But it is not the same with relations between these sensations.

From this point of view, all that is objective is devoid of all quality and is only pure relation. Corte, I shall not go so far as to say that objectivity is only pure quantity (this would be to particularize too far the nature of the relations in question), but we understand
how some one could have been carried away into saying that the world is only a differential equation.

With due reserve regarding this paradoxical proposition, we must nevertheless admit that nothing is objective which is not transmissible, and consequently that the relations between the sensations can alone have an objective value.

Perhaps it will be said that the esthetic emotion, which is common to all mankind, is proof that the qualities of our sensations are also the same for all men and hence are objective. But if we think about this, we shall see that the proof is not complete; what is proved is that this emotion is aroused in John as in James by the sensations to which John and James give the same name or by the corresponding combinations of these sensations; either because this emotion is associated in John with the sensation A, which John calls red, while similarly it is associated in James with the sensation B, which James calls red; or better because this emotion is aroused, not by the qualities themselves of the sensations, but by the harmonious combination of their relations of which we undergo the unconscious impression.

Such a sensation is beautiful, not because it possesses such a quality, but because it occupies such a place in the web of our associations of ideas, so that it can not be excited without putting in motion the "receiver" which is at the other end of the thread and which corresponds to the artistic emotion.

Whether we take the moral, the esthetic or the scientific point of view, it is always the same thing. Nothing is objective except what is identical for all; now we can only speak of such an identity if a comparison is possible, and can be translated into a "money of exchange" capable of transmission from one mind to another. Nothing, therefore, will have objective value except what is transmissible by "discourses," that is, intelligible.

But this is only one side of the question. An absolutely disordered aggregate could not have objective value since it would be unintelligible, but no more can a well-ordered assemblage have it, if it does not correspond to sensations really experienced. It seems to me superfluous to recall this condition, and I should not have dreamed of it, if it had not lately been maintained that physics is not an experimental science. Although this opinion has no chance of being adopted either by physicists or by philosophers, it is well to be warned so as not to let oneself slip over the declivity which would lead thither. Two conditions are therefore to be fulfilled, and if the first separates reality* from the dream, the second distinguishes it from the romance.

* Here we use the word real as a synonym of objective; I thus conform to common usage; perhaps I am wrong, our dreams are real, but they are not objective.
The question is to know whether this accord will be durable and whether it will persist for our successors. It may be asked whether the unions that the science of to-day makes will be confirmed by the science of to-morrow. To affirm that it will be so we can not invoke any a priori reason; but this is a question of fact, and science has already lived long enough for us to be able of fact by asking its history whether the edifices it builds stand the test of time, or whether they are only ephemeral constructions.

Now what do we see? At the first blush it seems to us that the theories last only a day and that ruins upon ruins accumulate. To-day the theories are born, to-morrow they are the fashion, the day after to-morrow they are classic, the fourth day they are superannuated, and the fifth they are forgotten. But if we look more closely, we see that what thus succumb are the theories, properly so called, those which pretend to teach us what things are. But there is in them something which usually survives. If one of them has taught us a true relation, this relation is definitively acquired, and it will be found again under a new disguise in the other theories which will successively come to reign in place of the old.

Take only a single example: The theory of the undulations of the ether taught us that light is a motion; to-day fashion favors the electromagnetic theory which teaches us that light is a current. We do not consider whether we could reconcile them and say that light is a current, and that this current is a motion. As it is probable in any case that this motion would not be identical with that which the partisans of the old theory presume, we might think ourselves justified in saying that this old theory is dethroned. And yet something of it remains, since between the hypothetical currents which Maxwell supposes there are the same relations as between the hypothetical motions that Fresnel supposed. There is, therefore, something which remains over and this something is the essential. This it is which explains how we see the present physicists pass without any embarrassment from the language of Fresnel to that of Maxwell. Doubtless many connections that were believed well established have been abandoned, but the greatest number remain and it would seem must remain.

And for these, then, what is the measure of their objectivity? Well, it is precisely the same as for our belief in external objects. These latter are real in this, that the sensations they make us feel appear to us as united to each other by I know not what indestructible cement and not by the hazard of a day. In the same way science reveals to us between phenomena other bonds finer but not less solid; these are threads so slender that they long remained unperceived, but once noticed there remains no way of not seeing them; they are therefore not less real than those which give their reality to external objects; small

matter that they are more recently known since neither can perish before the other.

It may be said, for instance, that the ether is no less real than any external body; to say this body exists is to say there is between the color of this body, its taste, its smell, an intimate bond, solid and persistent; to say the ether exists is to say there is a natural kinship between all the optical phenomena, and neither of the two propositions has less value than the other.

And the scientific syntheses have in a sense even more reality than those of the ordinary senses, since they embrace more terms and tend to absorb all the partial syntheses.

It will be said that science is only a classification and that a classification can not be true, but convenient. But it is true that it is convenient, it is true that it is so not only for me, but for all men; it is true that it will remain convenient for our descendants; it is true finally that this can not be by chance.

In sum, the sole objective reality consists in the relations of things whence results the universal harmony. Doubtless these relations, this harmony, could not be conceived outside of a mind which conceives them. But they are nevertheless objective because they are, will become, or will remain, common to all thinking beings.

This will permit us to revert to the question of the rotation of the earth which will give us at the same time a chance to make clear what precedes by an example.

7. The Rotation of the Earth

"... Therefore," have I said in Science and Hypothesis, "this affirmation, the earth turns round, has no meaning... or rather these two propositions, the earth turns round, and, it is more convenient to suppose that the earth turns round, have one and the same meaning."

These words have given rise to the strangest interpretations. Some have thought they saw in them the rehabilitation of Piety's system, and perhaps the justification of Galileo's condemnation.

Those who had read attentively the whole volume could not, however, delude themselves. This truth, the earth turns round, was put on the same footing as Euclid's postulate, for example. Was that to reject it? But better; in the same language it may very well be said: These two propositions, the external world exists, or, it is more convenient to suppose that it exists, have one and the same meaning. So the hypothesis of the rotation of the earth would have the same degree of certitude as the very existence of external objects.

But after what we have just explained in the fourth part, we may go farther. A physical theory, we have said, is by so much the more
true, as it puts in evidence more true relations. In the light of this new principle, let us examine the question which occupies us.

No, there is no absolute space; these two contradictory propositions: 'The earth turns round' and 'The earth does not turn round' are, therefore, neither of them more true than the other. To affirm one while denying the other, in the kinematic sense, would be to admit the existence of absolute space.

But if the one reveals true relations that the other hides from us, we can nevertheless regard it as physically more true than the other, since it has a richer content. Now in this regard no doubt is possible.

Behold the apparent diurnal motion of the stars, and the diurnal motion of the other heavenly bodies, and besides, the flattening of the earth, the rotation of Foucault's pendulum, the gyration of cyclones, the trade-winds, what not else? For the Ptolemaist all these phenomena have no bond between them; for the Copernican they are produced by the one same cause. In saying, the earth turns round, I affirm that all these phenomena have an intimate relation, and that is true, and that remains true, although there is not and can not be absolute space.

So much for the rotation of the earth upon itself; what shall we say of its revolution around the sun? Here again, we have three phenomena which for the Ptolemaist are absolutely independent and which for the Copernican are referred back to the same origin; they are the apparent displacements of the planets on the celestial sphere, the aberration of the fixed stars, the parallax of these same stars. Is it by chance that all the planets admit an inequality whose period is a year, and that this period is precisely equal to that of aberration, precisely equal besides to that of parallax? To adopt Ptolemy's system is to answer, yes; to adopt that of Copernicus is to answer, no; this is to affirm that there is a bond between the three phenomena and that also is true although there is no absolute space.

In Ptolemy's system, the motions of the heavenly bodies can not be explained by the action of central forces, celestial mechanics is impossible. The intimate relations that celestial mechanics reveals to us between all the celestial phenomena are true relations; to affirm the immobility of the earth would be to deny these relations, that would be to fool ourselves.

The truth for which Galileo suffered remains, therefore, the truth, although it has not altogether the same meaning as for the vulgar, and its true meaning is much more subtle, more profound and more rich.

8. Science for Its Own Sake

Not against M. LeRoy do I wish to defend science for its own sake; may be this is what he condemns, but this is what he cultivates, since he loves and seeks truth and could not live without it. But I have some thoughts to express.

We can not know all facts and it is necessary to choose those which are worthy of being known. According to Tolstoi, scientists make this choice at random, instead of making it, which would be reasonable, with a view to practical applications. On the contrary, scientists think that certain facts are more interesting than others, because they complete an unfinished harmony, or because they make one foresees a great number of other facts. If they are wrong, if this hierarchy of facts that they implicitly postulate is only an idle illusion, there could be no science for its own sake, and consequently there could be no science. As for me, I believe they are right, and, for example, I have shown above what is the high value of astronomical facts, not because they are capable of practical applications, but because they are the most instructive of all.

It is only through science and art that civilization is of value. Some have wondered at the formula: science for its own sake; and yet it is as good as life for its own sake, if life is only misery; and even as happiness for its own sake, if we do not believe that all pleasures are of the same quality, if we do not wish to admit that the goal of civilization is to furnish alcohol to people who love to drink.

Every act should have an aim. We must suffer, we must work, we must pay for our place at the game, but this is for seeing's sake; or at the very least that others may one day see.

All that is not thought is pure nothingness; since we can think only thought and all the words we use to speak of things can express only thoughts, to say there is something other than thought, is therefore an affirmation which can have no meaning.

And yet—strange contradiction for those who believe in time—geologic history shows us that life is only a short episode between two eternities of death, and that, even in this episode, conscious thought has lasted and will last only a moment. Thought is only a gleam in the midst of a long night.

But it is this gleam which is everything.