UNIVERSITY CIRCULARS.

On a Geometrical Proof of a Theorem in Numbers, by J. J. Sylvester.

The theorem in question is the well-known one that if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.

The proof is based on the following geometrical fact: if \(a, b, c \) are three numbers, and \(1/a + 1/b + 1/c = m/n \), then the equation \(ax^m + bx^n = cx^m + nx^n \) has a real solution in \(x \), and that if \(m/n \) is not a integer, there are no rational solutions.