United States Geological Survey. Member of the National Academy of Sciences, etc. In four volumes. New York: Franklin P. Harper and Brothers.

This twelvehundred-paged book is oversize, and it is too large for me to read comfortably. However, reading parts of it, I can infer that the book discusses the exploration and description of the Columbia River system, including its connection to the Pacific Ocean. The book is a valuable resource for understanding the history and geology of the region.

The book contains numerous illustrations and maps, indicating a focus on physical geography and natural history. The text is dense, with detailed descriptions of the river's course, its tributaries, and the surrounding landscape. The author, a member of the National Academy of Sciences, provides a comprehensive overview of the region's natural features.

The book also includes discussions on the indigenous peoples who lived along the Columbia River, their culture, and their relationship with the land.

Overall, this book is an important resource for anyone interested in the history and geography of the Pacific Northwest.

--

The Nation

Oct. 26, 1893

The Columbia (at 53° 57' N., 121° 30' W.) is today in the news. It was for a time the most important river in the world, but it is now surpassed by the Mississippi and the Amazon. The Columbia is longer and wider than either of these rivers, but it is not as navigable. Its width at the mouth is 600 feet, and its depth at low water is 20 feet. The river flows through a series of rapids and falls, and its current is swift. The Columbia is fed by the Snake River, which is navigable for about 500 miles. The Snake River is itself fed by the Yellowstone, which flows into it from the north.

The Columbia is divided into three parts: the upper, middle, and lower. The upper Columbia is the most interesting, as it contains the falls and rapids. The middle Columbia is the widest and deepest part of the river, and the lower Columbia is the most navigable.

The Columbia is navigable for about 800 miles from its mouth, and it is possible to travel up the river for about 150 miles above the falls. The river is not deep enough for ocean-going vessels, but it is wide enough for steamboats. The navigation season on the Columbia begins in May and lasts until October.

The Columbia is an important waterway, and it is used for transportation and commerce. The river is also an important source of hydroelectric power.

The Columbia is a major contributor to the regional economy, and it is an important part of the natural landscape.

The Nation

Oct. 26, 1893

The Nation
is the most familiar to readers of English books was for William Siemens, who worked a great improvement in the quality of English engraving, and first formed the practical Englishman to entertain a desire respect in practical matters for the scientific physicist. He died ten years ago, leaving the best distinction a herald in Westminster Abbey. He was the fourth of the brothers. His second, Mr. Siemens, the inventor of the Siemens meter, devoted himself to experimental science, and the fifth, Ira, is probably the greatest business manager among them. Walter, the seventh, was the developer of the wonderful scientific copper-iron wire in the Convaay, with Otto, the eighth, his successor there. Several others of the names have been connected with the house; but the most interesting man of them all has been the eldest of the brothers, Dr. Wayne Siemens, Member of the Berlin Academic of Science, inventor of the dynamo, discoverer of electrostatic charging by means of a battery, author of the Siemens Hall of Music, earliest adherent of Parzival's theory, and founder of the fortunes of the house of Siemens.

The mechanical perfection of the volume is worthy of the author. As a genuine book binding, leaves of tinted paper at fault that 132 of these made no fault, beautifully cut pages, superb presswork, all proclaim that commercial execution has not been the first aim. In fact, the work is in part quite faithful to the nature of a volume. Dr. Siemens has perhaps some share in the moral quality as unknown among his countrymen, a deep compassion sense that his building an industrial mostly negative and self-denigration, with an earlier sense of Germany's great. But there are in truth several points where Siemens did not for long receive all the credit to which he was so richly entitled. In the first place, he was not an accomplished, a cold, methodical mechanic, and so off the point, thought that the cable would hang in a necessary curve, and would necessarily break. This was certainly far from a foolish idea. Siemens did not expect to have anything to do with the mechanical business, but believed that the operation could be performed as the Englishman proposed, yet that it could be done by putting on a break sufficient to support a weight of cable equal to the weight of the water. They start from Russia in the evening, proceeding on the English plan. By doing so they found they had only a third part of the cable, though they had covered only a fifth of the distance. They had only just begun to reach a shallow spot near the mouth. The contractor then went to Siemens and requested him to bring to the cable. Many a man would have simply reversed his hands. Why should this be undertaken so difficult a task and how much responsibility, without proper equipment, without any surplus of labor, and without adequate machinery? Incredible as it may seem, they did not have a ship's cable on board. Here was the natural problem of laying down perhaps a million dollar's worth of cables at the bottom of the deep sea, without losing it if one could help it. Yet Siemens does not seem to have hesitated. He took the cable; and, although he strained it a little, he bore it successfully. We can well believe what he then says:

"The mechanical perfection of this cable, the consideration that any recovery of the cable, and the confidence that we may perform any work that we desire, led to the making of a deep-sea cable a very many years ago, and for a length of time thoroughly submerging other cables along the American coast. I thought it necessary for me to have a deep-sea cable, and I made use of my own resources for the purpose. I sold my stock in the company, and I spent about five years in the service of the company."

The full account of Siemens's work will be most interesting to the engineer and to the man of science; even the reader who may not desire to study all this will find it one of the most charming publications of the year.